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ABSTRACT

The dynamic modelling of nonlinear electronic circuits often results in high-dimensional systems of differential
equations that are computationally expensive to solve, particularly when incorporating parasitic elements with
widely varying time scales. This research proposes a dimensionality reduction framework utilizing singular
perturbation theory applied to the chaotic Chua circuit. By decomposing the system dynamics into "slow" (outer)
and "fast" (inner) time scales, and invoking Tikhonov’s theorem to validate the asymptotic correctness, a
reduced-order model is derived. A uniform approximation is subsequently constructed by mathematically
matching the boundary layer transients with the steady-state behaviour. Numerical simulations compare this
approximation against the full system solved via standard ODE solvers, revealing that the uniform approximation
achieves high fidelity with negligible absolute errors. The results confirm that singular perturbation is an
effective technique for minimizing computational cost without compromising dynamical accuracy, presenting
significant potential for scaling to higher-dimensional problems.
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INTRODUCTION

The dynamic modelling of electronic circuits is fundamental to understanding system behaviours, particularly
when characterizing complex relationships between voltage, current, and nonlinear resistive elements. However,
accurate dynamic modelling often results in high-dimensional systems of ordinary differential equations (ODEs)
that are computationally expensive to solve, especially when integrating stiff equations with widely varying time
scales. As noted in recent studies on spacecraft electrical systems and microgrid clusters, the presence of parasitic
parameters—such as small inductances and capacitances—often creates multiple time scales that complicate
numerical stability [1], [2]. To address this, singular perturbation theory (SPT) offers a robust mathematical
framework, allowing researchers to decompose a high-dimensional system into reduced-order "slow" and "fast"
subsystems. By mathematically isolating the boundary layer phenomena where fast transients occur, SPT
provides a systematic method for model reduction that retains the essential dynamics of the system while
significantly lowering computational overhead [3], [4].

METHODOLOGY
Mathematical Modelling
Al.  Chua Circuit

The Chua circuit was first invented in 1983 by Leon O. Chua. It is a simple electronic circuit that exhibits chaos
and many bifurcation phenomena. The existence of chaotic attractors from the Chua circuit had been confirmed
numerically by Matsumoto via computer simulations, observed experimentally by Zhong and Ayrom in
laboratory, and mathematically proved by Chua et al. in [5].
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The circuit diagram of the Chua Circuit is shown in Figure 1. The circuit consists of five circuit elements: two
capacitors Ci and C», one inductor L1, one linear resistor R and one nonlinear resistor Ng. The component Nr is
a nonlinear negative resistance called a Chua's diode. It is usually made of a circuit containing an amplifier with
positive feedback.
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Figure 5.1: The Chua circuit

Recent literature highlights the evolving complexity of Chua’s circuit, extending beyond simple chaotic
demonstration to sophisticated control and synchronization applications. Xu et al. demonstrated the utility of
Field-Programmable Gate Arrays (FPGAs) in numerically simulating synchronized Chua circuits, emphasizing
the need for efficient model representations to match hardware constraints [6]. Similarly, Sun et al. and
Chaudhury et al. have explored synchronous dynamics in robotic arms and heterogeneous oscillators driven by
Chua circuits, respectively, reinforcing the necessity of precise yet computationally manageable mathematical
models [7], [8]. Furthermore, the investigation of Jacobi stability in Muthuswamy—Chua—Ginoux systems by
Wang et al. illustrates that even in modified circuit topologies, the core challenges of nonlinear stability and
dimensionality persist [9]. These studies collectively suggest that while the physical implementations of chaos
are advancing, the demand for analytical methods that can simplify these high-dimensional interactions without
losing topological accuracy is higher than ever.

A2. Mathematical Model of Chua Circuit

The Chua circuit can be analysed by using Kirchhoff's circuit laws, the dynamics of this circuit can be modelled
by a system of three nonlinear ordinary differential equations (ODEs) in the variables x(¢), y(¢) and z(¢), which
represent the voltages across the capacitors Ci and C», and the intensity of the electrical current in the inductor
Ly, respectively. The system of ODEs has the form

%=§ (z — cyx3 — %% — u x)

dy

- = hx ()
dz

—, = —ax+y+bz

Here the € holds a small value while the parameters ci, c2, i, 5, a and b are determined by the particular values
of the circuit components.

A3.  Singular Perturbation Theory

Let consider a multiple time scales system of the form

eZ=fxy), x(0,€=x 2

dy

= =9xy),  y(0,€) =y
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where x € R™,y € R™, e € (0,1],t € [0,T], f and g are sufficiently smooth function in the domain
D ={(X,y)|X| Sdlo Iyl SdZ}i d1'd2 ER+'

Thatis, f € C"(D,R™) and g € C"(D,R™) for r > 2. The variable x is called the fast variable while variable y
is the slow variable in the system.

Formally, by setting € = 0, we obtain a differential algebraic system:

0= f(x5y), 3)

j_y:g(f’}_])f }_’(0,0):)’0

t

This system is called the “degenerate system” in the singular perturbation theory as its order is less than the order
of system (2). Since system (3) has reduced to the differential algebraic equation (DAE) form, system (2) is an
example of a singularly perturbed system. Then Tikhonov theorem [10] is referred as it shows how well the
system (2) is approximated by the unperturbed system (3).

On the other hand, by using the scaled time variable T = t/e, system (2) can be reformulated in an equivalent
form:

S=Fx.5, 20,6 =x “)

—=Eg'(x,y), 5;(0:6)=y0

where € € (0,1],7 € [O, g] , 7 and g are sufficiently smooth functions in the domain

5={(f:37)|i| Sclﬂ |j7| SCZ}) C1,C ER+

This system is a regularly perturbed ODE. By referring to the regular perturbation theory, we know that the
system (4) is well-approximated by the adjoined system [11].

In general, two solutions (approximations) can be derived for a singularly perturbed problem when setting € =
0. The “outer solution”, the solution for the degenerate system (3), provides a good approximation outside the
boundary layer. On the other hand, the “inner solution”, the solution for the adjoined system (4), provides a good
approximation in the boundary layer. A process of matching of these solutions is essential to relate the two
solutions and obtain a complete solution that approximates the system dynamics throughout the whole problem
domain. Kaplun and Langerstorm [12] employed “intermediate matching” which is based on the so-called
“overlapped hypothesis”, that is, an assumption that there exist extended domains of validity for the outer and
inner expansions with a non-empty intersection, which is where both the outer and inner expansions are valid
and can be matched. More precisely, the inner ¢, (7) and outer approximation ¢, (t) are matched if they have a
common limit as € tends to zero, hence the requirement for matching can be represented as

lim ¢y (t) = lim ¢, (7)
€—0 €-0
Subsequently, the final, matched solution that well-approximates the actual solution on the whole problem

domain is called the “uniform approximation”. This approximation can be obtained by adding the inner and outer
solutions and subtracting their common limit as follows:

®,(t) = ¢po(t) + o(r) — M
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where @, (¢) is the uniform approximation and

Ne = lim ¢o(t) = lim ¢o(7)

t—0
is the common limit.

Simulation

B1.  Outer solution

Within the slow time scale, consider the system of ODEs (1). By letting € = 0, the first equation of system (1)
reduces to an algebraic equation

Z— X3 —cxt—ux,=0 (%)

Therefore, the voltages across the capacitors Ci, x,, in the outer region, appears to be constant in the post-
transient time course. Here, x, , y» and z, are used to replace the x, y and z respectively to denote the x, y and z in
outer region.

Meanwhile, rewrite the second and the third equations of the ODEs system (1) with the substitution of x, gives

dyo
=2 =—Bx, (6)
dz,
dt

=—ax, +y, + bz,
where x, can be found numerically from the equation (5).
B2. Inner Solution

: . : : t. .
On the other hand, upon replacement of the scaling dimensionless variables, 7 = - into the system of equations
(1), the new governing equations can be written as

d

Hd=z- 1} — coxf — px;

dt

dy; _

2 = —epx, ()
dzp

E = —e(ax, + Yi + bZI)

Subscript 7 here indicates the inner solution.

: . . . d d
If we set € — 0 as expected in the perturbation theory, we will obtain % = f = 0. Hence, y; and z; are

approximately constant throughout the system, that is, y; = 3(0) and z; = z(0).

Subsequently, substitution of z; = z(0) into the first equation of system (7) leads to

d
% = 2(0) — c1x7 — Cxf — px; . 3

B3 Matching and Uniform Approximation

The inner solution which provides a good approximation in the transient period, together with the outer solution
which provides a good approximation in the post-transient period, comprise a total solution for the system. These

Page 6417


https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)
ISSN No. 2321-2705 | DOI: 10.51244/1JRSI |Volume XII Issue XI November 2025

% RIS

solutions have a common limit or overlap term, that is, where the outer solution begins to take over from inner
solution. Hence matching is required here to get the uniform approximation.

By applying the matching condition to the voltages across the capacitors C> on yy and y,, we get
limy,(¢) = lim y,(z) = y(0).

While applying the matching condition to the intensity of the electrical current in the inductor L on z; and z,
gives

limz,(t) = lim z,(t) = z(0).
t-0 T—o00
On the other hand, imposing the matching requirement on the voltages across the capacitors Ci gives
limx,(t) = lim x;(t) =N,
t—0 T—00
Subsequently, we can have the uniform approximation x, y and z by adding the inner and outer solutions and
subtracting their common limit, that is,
Cy =€+ €6 —Mc
Yu=Y1+Yo=y(0) =,
zy =271+ 2z, —2(0) =z,
where these solutions well approximate the system dynamics throughout the whole problem domain.

RESULT DISCUSSION

We take the parameters ¢; = 43—4, Cy = %,u =2,=1,a=0.7,b=0.24 and € = 0.05 for the simulation of

Chua circuit using singular perturbation theory.
Outer Solution

By considering the initial conditions x(0) =0, »(0) =1, z(0) = 1 and set € = 0, we obtain the outer approximation
by solving the algebraic equations (5) and differential equations (6). The simulation was done based on the
coding written via Matlab with a step size of 0.01 for t € [0.4]. The results of the outer approximation are
presented in Figure 2.

04

Figure 2: Outer approximations of x, y and z
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Inner Solution

On the other hand, we solve the equation (8) in the boundary layer to get the inner approximation. The simulation
was done based on the coding written via Matlab with a step size of 0.001 for ¢t € [0, 0.05], that is, we want to
observe the rapid change in the boundary layer particularly. The result is represented pictorially in the Figure 3.
We can see that the voltages across the capacitors C at time ¢ = 0 is equal to its initial value.

0.18
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0.12F -
01 .
0.08f -
0.06f -
0.04F .
0.02+ .

0

0 0.01 0.02 0.03 0.04 0.05
Time, s

Figure 3: Inner approximation for x

An additional remark here is that we can see that both the scaled system in outer and inner approximations (in
subsection B1 and B2) are equivalent to the original system (1). We have the small parameter € appears in the

. dx 1 . . . a
equation d—to == f1(x0,¥Y0,20) of the outer solution, whereas € appears in the equations % = ef,(x;, Y1, 21)

d . . . .
and f = €f5(x;, ¥, z;). This enables the singular perturbation procedure to take place so that outer and inner

approximations are obtained in different time scales.
Uniform approximation

Subsequently, we proceed to match the outer and inner solutions. More precisely, the voltages across the
capacitors Cz on yyand y, is

limy,(t) = lim y,(z) =y(0) = 1.
While the intensity of the electrical current in the inductor L on z; and z, are matched where
ltir’% z,(t) = lim z;(t) = z(0) = 1.
— T—>00

On the other hand, the matching requirement is applied on the voltages across the capacitor C; and thus its
common limit is ltirrol Xo(t) = lim x;(7) = 0.1696 for this case.
- T—00

As a consequence, the uniform approximations are for x,y and z are
Xy =x;+x,—0.1696, vy, =y,, zZ,=2,.

The uniform approximation for x, y and z are presented in Figure 4.
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Figure 4: Uniform approximations of x, y and z
Comparison with Actual Solution

To justify the approximations in this project, we also solve the system of ODEs (1) numerically by using the
Matlab function odel5s. The comparison of the uniform approximations and actual solution can be seen in the
Figure 5(a), Figure 5(b) and Figure 5(c).

By using the outer approximation, the reduced ODEs system (6) can be solved in lower computational cost.
Through the results shown in the Figure 2(a), Figure 2(b) and Figure 2(c), we can observe that y, and z, well-
approximate the y and z, but the approximation of x, is not valid in the boundary layer, that is, x, ( = 0) # x(¢ =
0).

On the other hand, Figure 3 is the inner solutions for the voltages across the capacitors Ci. These solutions satisfy
the given initial condition but fail to provide a good approximation after the fast transient period. The matching
applied to the outer and inner solutions has provided a better approximation, that is, the uniform approximation.
This can be seen in Figure 4(a) and Figure 5(a).

Note here the maximum of absolute error €, used in the computation is defined as

é = max{lu(®) — u (O}
where u(t) represents the solution of full system at time ¢ while p,, (t) is the uniform approximation at time z.
The maximum of the absolute errors of x, y and z are 0.145, 0.0013 and 0.0096 respectively.

CONCLUSION

In brief, this project is concerned with the application of the singular perturbation theory in reducing the size of
dynamic model of the electronic circuits. We have applied the singular perturbation theory to reduce the size of
dynamic model of the Chua circuit. The uniform approximation in our study provides a reasonably good
approximation with a lower computational cost. The use of the approach discussed in this project can be extended
to deal with higher dimensional problem in future, for example, for the VLSI circuits.
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Figure 5: Uniform approximation and numerical solution of system of equations (1) for the voltages across the
capacitors Ci, capacitors C and inductor L; respectively, with parameters ¢; = 43—4, Cy = 42—1, u=2p=1a=
0.7, b = 0.24 and initial conditions: x(0) =0, »(0) =1 and z(0) = 1.
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