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ABSTRACT 

The dynamic modelling of nonlinear electronic circuits often results in high-dimensional systems of differential 

equations that are computationally expensive to solve, particularly when incorporating parasitic elements with 

widely varying time scales. This research proposes a dimensionality reduction framework utilizing singular 

perturbation theory applied to the chaotic Chua circuit. By decomposing the system dynamics into "slow" (outer) 

and "fast" (inner) time scales, and invoking Tikhonov’s theorem to validate the asymptotic correctness, a 

reduced-order model is derived. A uniform approximation is subsequently constructed by mathematically 

matching the boundary layer transients with the steady-state behaviour. Numerical simulations compare this 

approximation against the full system solved via standard ODE solvers, revealing that the uniform approximation 

achieves high fidelity with negligible absolute errors. The results confirm that singular perturbation is an 

effective technique for minimizing computational cost without compromising dynamical accuracy, presenting 

significant potential for scaling to higher-dimensional problems. 

Keywords: Perturbation theory, Tikhonov's theorem, Chua circuit  

INTRODUCTION   

The dynamic modelling of electronic circuits is fundamental to understanding system behaviours, particularly 

when characterizing complex relationships between voltage, current, and nonlinear resistive elements. However, 

accurate dynamic modelling often results in high-dimensional systems of ordinary differential equations (ODEs) 

that are computationally expensive to solve, especially when integrating stiff equations with widely varying time 

scales. As noted in recent studies on spacecraft electrical systems and microgrid clusters, the presence of parasitic 

parameters—such as small inductances and capacitances—often creates multiple time scales that complicate 

numerical stability [1], [2]. To address this, singular perturbation theory (SPT) offers a robust mathematical 

framework, allowing researchers to decompose a high-dimensional system into reduced-order "slow" and "fast" 

subsystems. By mathematically isolating the boundary layer phenomena where fast transients occur, SPT 

provides a systematic method for model reduction that retains the essential dynamics of the system while 

significantly lowering computational overhead [3], [4]. 

METHODOLOGY 

Mathematical Modelling  

A1. Chua Circuit 

The Chua circuit was first invented in 1983 by Leon O. Chua. It is a simple electronic circuit that exhibits chaos 

and many bifurcation phenomena. The existence of chaotic attractors from the Chua circuit had been confirmed 

numerically by Matsumoto via computer simulations, observed experimentally by Zhong and Ayrom in 

laboratory, and mathematically proved by Chua et al. in [5].  
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The circuit diagram of the Chua Circuit is shown in Figure 1. The circuit consists of five circuit elements: two 

capacitors C1 and C2, one inductor L1, one linear resistor R and one nonlinear resistor NR. The component NR is 

a nonlinear negative resistance called a Chua's diode. It is usually made of a circuit containing an amplifier with 

positive feedback. 

 

Figure 5.1: The Chua circuit 

Recent literature highlights the evolving complexity of Chua’s circuit, extending beyond simple chaotic 

demonstration to sophisticated control and synchronization applications. Xu et al. demonstrated the utility of 

Field-Programmable Gate Arrays (FPGAs) in numerically simulating synchronized Chua circuits, emphasizing 

the need for efficient model representations to match hardware constraints [6]. Similarly, Sun et al. and 

Chaudhury et al.  have explored synchronous dynamics in robotic arms and heterogeneous oscillators driven by 

Chua circuits, respectively, reinforcing the necessity of precise yet computationally manageable mathematical 

models [7], [8]. Furthermore, the investigation of Jacobi stability in Muthuswamy–Chua–Ginoux systems by 

Wang et al. illustrates that even in modified circuit topologies, the core challenges of nonlinear stability and 

dimensionality persist [9]. These studies collectively suggest that while the physical implementations of chaos 

are advancing, the demand for analytical methods that can simplify these high-dimensional interactions without 

losing topological accuracy is higher than ever. 

A2. Mathematical Model of Chua Circuit 

The Chua circuit can be analysed by using Kirchhoff's circuit laws, the dynamics of this circuit can be modelled 

by a system of three nonlinear ordinary differential equations (ODEs) in the variables x(t), y(t) and z(t), which 

represent the voltages across the capacitors C1 and C2, and the intensity of the electrical current in the inductor 

L1, respectively. The system of ODEs has the form 

                                               
𝑑𝑥

𝑑𝑡
=

1

𝜖
 (𝑧 − 𝑐1𝑥3 − 𝑐2𝑥2 − 𝜇 𝑥)                                                 

                                               
𝑑𝑦

𝑑𝑡
= −𝛽𝑥                                                                             (1) 

                                               
𝑑𝑧

𝑑𝑡
= −𝛼𝑥 + 𝑦 + 𝑏𝑧 

Here the 𝜖 holds a small value while the parameters c1, c2, 𝜇, 𝛽, a and b are determined by the particular values 

of the circuit components. 

A3. Singular Perturbation Theory 

Let consider a multiple time scales system of the form 

                                            𝜖
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦),      𝑥(0, 𝜖) = 𝑥0                                               (2) 

                                              
𝑑𝑦

𝑑𝑡
= 𝑔(𝑥, 𝑦),      𝑦(0, 𝜖) = 𝑦0 
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where 𝑥 ∈ 𝑅𝑛, 𝑦 ∈ 𝑅𝑚, 𝜖 ∈ (0, 1], 𝑡 ∈ [0, 𝑇], 𝑓 and 𝑔 are sufficiently smooth function in the domain 

                                     𝐷 = {(𝑥, 𝑦): |𝑥| ≤ 𝑑1, |𝑦| ≤ 𝑑2},          𝑑1, 𝑑2 ∈ 𝑅+. 

That is, 𝑓 ∈ 𝐶𝑟(𝐷, 𝑅𝑛) and 𝑔 ∈ 𝐶𝑟(𝐷, 𝑅𝑚) for 𝑟 ≥ 2.  The variable x is called the fast variable while variable y 

is the slow variable in the system. 

Formally, by setting 𝜖 = 0, we obtain a differential algebraic system: 

                                                                      0 = 𝑓(𝑥̅, 𝑦̅),                                                                           (3) 

𝑑𝑦̅

𝑑𝑡
= 𝑔(𝑥̅, 𝑦̅),      𝑦̅(0, 0) = 𝑦0 

This system is called the “degenerate system” in the singular perturbation theory as its order is less than the order 

of system (2). Since system (3) has reduced to the differential algebraic equation (DAE) form, system (2) is an 

example of a singularly perturbed system. Then Tikhonov theorem [10] is referred as it shows how well the 

system (2) is approximated by the unperturbed system (3). 

On the other hand, by using the scaled time variable 𝜏 = 𝑡/𝜖, system (2) can be reformulated in an equivalent 

form: 

                                                                 
𝑑𝑥̃

𝑑𝑡
= 𝑓(𝑥̃ , 𝑦̃),      𝑥̃(0, 𝜖) = 𝑥0                                                 (4) 

                                                             
𝑑𝑦̃

𝑑𝑡
= 𝜖𝑔̃(𝑥̃, 𝑦̃),      𝑦̃(0, 𝜖) = 𝑦0 

 

where 𝜖 ∈ (0,1], 𝜏 ∈ [0,
𝑇

𝜖
] , f

~ and g~ are sufficiently smooth functions in the domain 

                         𝐷̃ = {(𝑥̃, 𝑦̃): |𝑥̃| ≤ 𝑐1, |𝑦̃| ≤ 𝑐2},          𝑐1, 𝑐2 ∈ 𝑅+. 

This system is a regularly perturbed ODE. By referring to the regular perturbation theory, we know that the 

system (4) is well-approximated by the adjoined system [11]. 

In general, two solutions (approximations) can be derived for a singularly perturbed problem when setting  𝜖 =
0. The “outer solution”, the solution for the degenerate system (3), provides a good approximation outside the 

boundary layer. On the other hand, the “inner solution”, the solution for the adjoined system (4), provides a good 

approximation in the boundary layer. A process of matching of these solutions is essential to relate the two 

solutions and obtain a complete solution that approximates the system dynamics throughout the whole problem 

domain. Kaplun and Langerstorm [12] employed “intermediate matching” which is based on the so-called 

“overlapped hypothesis”, that is, an assumption that there exist extended domains of validity for the outer and 

inner expansions with a non-empty intersection, which is where both the outer and inner expansions are valid 

and can be matched. More precisely, the inner 𝜑0(𝜏) and outer approximation 𝜙0(𝑡) are matched if they have a 

common limit as 𝜖 tends to zero, hence the requirement for matching can be represented as 

lim
𝜖→0

𝜙0(𝑡) = lim
𝜖→0

𝜑0(𝜏)  

Subsequently, the final, matched solution that well-approximates the actual solution on the whole problem 

domain is called the “uniform approximation”. This approximation can be obtained by adding the inner and outer 

solutions and subtracting their common limit as follows: 

Φ𝑢(𝑡) = 𝜙0(𝑡) + 𝜑(𝜏) − ηc 
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where )(tu  is the uniform approximation and  

ηc = lim
               𝑡→0

𝜙0(𝑡) = lim
𝜏→∞

𝜑0(𝜏)  

is the common limit. 

Simulation 

B1. Outer solution 

Within the slow time scale, consider the system of ODEs (1). By letting 𝜖 = 0, the first equation of system (1) 

reduces to an algebraic equation 

                                                𝑧 − 𝑐1𝑥𝑜
3 − 𝑐2𝑥𝑜

2 − 𝜇 𝑥𝑜 = 0                                                            (5)        

Therefore, the voltages across the capacitors C1, xo, in the outer region, appears to be constant in the post-

transient time course. Here, xo , yo and zo are used to replace the x, y and z respectively to denote the x, y and z in 

outer region. 

Meanwhile, rewrite the second and the third equations of the ODEs system (1) with the substitution of xo gives  

                                                                     
𝑑 𝑦𝑜

𝑑𝑡
= −𝛽 𝑥𝑜                                                                (6) 

𝑑 𝑧𝑜

𝑑𝑡
= −𝛼𝑥𝑜 + 𝑦𝑜 + 𝑏𝑧𝑜 

where xo can be found numerically from the equation (5).  

B2.       Inner Solution 

On the other hand, upon replacement of the scaling dimensionless variables,  𝜏 =
𝑡

𝜖
 into the system of equations 

(1), the new governing equations can be written as 

                                                   
𝑑𝑥𝐼

𝑑𝑡
= 𝑧 − 𝑐1𝑥𝐼

3 − 𝑐2𝑥𝐼
2 − 𝜇𝑥𝐼                                                 

                                                   
𝑑𝑦𝐼

𝑑𝑡
= −𝜖𝛽𝑥𝐼                                                                                   (7) 

                                                   
𝑑𝑧𝐼

𝑑𝑡
= −𝜖(𝛼𝑥𝐼 + 𝑦𝐼 + 𝑏𝑧𝐼) 

Subscript I here indicates the inner solution. 

If we set 𝜖 → 0 as expected in the perturbation theory, we will obtain  
𝑑𝑦𝐼

𝑑𝜏
=

𝑑𝑧𝐼

𝑑𝜏
= 0. Hence, yI and zI are 

approximately constant throughout the system, that is, yI  =  y(0) and zI  = z(0). 

Subsequently, substitution of zI  = z(0) into the first equation of system (7) leads to   

                                   
𝑑𝑥𝐼

𝑑𝑡
= 𝑧(0) − 𝑐1𝑥𝐼

3 − 𝑐2𝑥𝐼
2 − 𝜇𝑥𝐼 .                                                            (8)                                                         

B3  Matching and Uniform Approximation 

The inner solution which provides a good approximation in the transient period, together with the outer solution 

which provides a good approximation in the post-transient period, comprise a total solution for the system. These 
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solutions have a common limit or overlap term, that is, where the outer solution begins to take over from inner 

solution. Hence matching is required here to get the uniform approximation. 

By applying the matching condition to the voltages across the capacitors C2 on yI and yo, we get 

                                           lim
𝑡→0

𝑦𝑜(𝑡) = lim
𝜏→∞

𝑦𝐼(𝜏) = y(0). 

While applying the matching condition to the intensity of the electrical current in the inductor L1 on zI and zo 

gives 

lim
𝑡→0

𝑧𝑜(𝑡) = lim
𝜏→∞

𝑧𝐼(𝜏) = z(0). 

On the other hand, imposing the matching requirement on the voltages across the capacitors C1 gives 

lim
𝑡→0

𝑥𝑜(𝑡) = lim
𝜏→∞

𝑥𝐼(𝜏) = ηc 

Subsequently, we can have the uniform approximation x, y and z by adding the inner and outer solutions and 

subtracting their common limit, that is,  

                                                        𝑐𝑢 = 𝑐𝐼 + 𝑐𝑜 − ηc 

                                                               𝑦𝑢 = 𝑦𝐼 + 𝑦𝑜 − 𝑦(0) = 𝑦𝑜      

                                                       𝑧𝑢 = 𝑧𝐼 + 𝑧𝑜 − 𝑧(0) = 𝑧𝑜 

where these solutions well approximate the system dynamics throughout the whole problem domain.  

RESULT DISCUSSION 

We take the parameters 𝑐1 =
44

3
, 𝑐2 =

41

2
, 𝜇 = 2, 𝛽 = 1, 𝑎 = 0.7, 𝑏 = 0.24  and  𝜖 = 0.05 for the simulation of 

Chua circuit using singular perturbation theory.  

Outer Solution 

By considering the initial conditions x(0) = 0, y(0) = 1, z(0) = 1 and set  𝜖 = 0, we obtain the outer approximation 

by solving the algebraic equations (5) and differential equations (6). The simulation was done based on the 

coding written via Matlab with a step size of 0.01 for 𝑡 ∈ [0. 4].  The results of the outer approximation are 

presented in Figure 2. 

 

Figure 2: Outer approximations of x, y and z 
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Inner Solution 

On the other hand, we solve the equation (8) in the boundary layer to get the inner approximation. The simulation 

was done based on the coding written via Matlab with a step size of 0.001 for 𝑡 ∈ [0, 0.05], that is, we want to 

observe the rapid change in the boundary layer particularly.  The result is represented pictorially in the Figure 3. 

We can see that the voltages across the capacitors C1 at time t = 0 is equal to its initial value.  

 

Figure 3: Inner approximation for x 

An additional remark here is that we can see that both the scaled system in outer and inner approximations (in 

subsection B1 and B2) are equivalent to the original system (1). We have the small parameter 𝜖 appears in the 

equation 
𝑑𝑥𝑂

𝑑𝑡
=

1

𝜖
 𝑓1(𝑥𝑂 , 𝑦𝑂 , 𝑧𝑂) of the outer solution, whereas 𝜖  appears in the equations 

𝑑𝑦𝐼

𝑑𝑡
= 𝜖𝑓2(𝑥𝐼 , 𝑦𝐼 , 𝑧𝐼) 

and  
𝑑𝑧𝐼

𝑑𝑡
= 𝜖𝑓3(𝑥𝐼 , 𝑦𝐼 , 𝑧𝐼). This enables the singular perturbation procedure to take place so that outer and inner 

approximations are obtained in different time scales.                                                                                 

Uniform approximation  

Subsequently, we proceed to match the outer and inner solutions.  More precisely, the voltages across the 

capacitors C2 on yI and yo is     

                                                           lim
𝑡→0

𝑦𝑜(𝑡) = lim
𝜏→∞

𝑦𝐼(𝜏) = y(0) = 1. 

While the intensity of the electrical current in the inductor L1 on zI and zo are matched where 

lim
𝑡→0

𝑧𝑜(𝑡) = lim
𝜏→∞

𝑧𝐼(𝜏) = z(0) = 1. 

On the other hand, the matching requirement is applied on the voltages across the capacitor C1 and thus its 

common limit is lim
𝑡→0

𝑥𝑜(𝑡) = lim
𝜏→∞

𝑥𝐼(𝜏) = 0.1696 for this case. 

As a consequence, the uniform approximations are for 𝑥, 𝑦  and 𝑧 are 

                                                𝑥𝑢 = 𝑥𝐼 + 𝑥𝑜 − 0.1696,  𝑦𝑢 = 𝑦𝑜 ,     𝑧𝑢 = 𝑧𝑜 . 

The uniform approximation for x, y and z are presented in Figure 4. 
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Figure 4: Uniform approximations of x, y and z 

Comparison with Actual Solution  

To justify the approximations in this project, we also solve the system of ODEs (1) numerically by using the 

Matlab function ode15s. The comparison of the uniform approximations and actual solution can be seen in the 

Figure 5(a), Figure 5(b) and Figure 5(c). 

By using the outer approximation, the reduced ODEs system (6) can be solved in lower computational cost. 

Through the results shown in the Figure 2(a), Figure 2(b) and Figure 2(c), we can observe that yo and zo well-

approximate the y and z, but the approximation of xo is not valid in the boundary layer, that is, xo (t = 0) ≠ x(t = 

0).  

On the other hand, Figure 3 is the inner solutions for the voltages across the capacitors C1. These solutions satisfy 

the given initial condition but fail to provide a good approximation after the fast transient period. The matching 

applied to the outer and inner solutions has provided a better approximation, that is, the uniform approximation. 

This can be seen in Figure 4(a) and Figure 5(a).  

Note here the maximum of absolute error 𝑒̂, used in the computation is defined as 

𝑒̂ = max
0≤𝑡≤𝑇

{|𝜇(𝑡) − 𝜇𝑢(𝑡)|} 

where 𝜇(𝑡) represents the solution of full system at time t while 𝜇𝑢(𝑡) is the uniform approximation at time t. 

The maximum of the absolute errors of 𝑥, 𝑦 and 𝑧 are 0.145, 0.0013 and 0.0096 respectively. 

CONCLUSION 

In brief, this project is concerned with the application of the singular perturbation theory in reducing the size of 

dynamic model of the electronic circuits. We have applied the singular perturbation theory to reduce the size of 

dynamic model of the Chua circuit. The uniform approximation in our study provides a reasonably good 

approximation with a lower computational cost. The use of the approach discussed in this project can be extended 

to deal with higher dimensional problem in future, for example, for the VLSI circuits. 
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Figure 5:  Uniform approximation and numerical solution of system of equations (1) for the voltages across the 

capacitors C1, capacitors C2 and inductor L1 respectively, with parameters 𝑐1 =
44

3
, 𝑐2 =

41

2
, 𝜇 = 2, 𝛽 = 1, 𝑎 =

0.7, 𝑏 = 0.24 and initial conditions: x(0) = 0, y(0) = 1 and z(0) = 1.  
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